The Testmoz Invitational Mathematics Competition

June 20 - July 19, 2018

INSTRUCTIONS

1. This is a 30 -question multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct. The acronym NOTA means that none of the above answers are correct.
2. You will have $\mathbf{6 0}$ minutes to complete the test.
3. No aids are permitted other than scratch paper, graph paper, rulers, and erasers. No calculators are allowed. No problems on the test will require the use of a calculator.
4. Figures are not necessarily drawn to scale.
5. All angle measures are expressed in radians unless specified.
6. Each correct answer will be rewarded 5 points, each incorrect answer will be given 0 points, and each blank answer will be given 1 point.
7. Ties will be broken based on the hardest problem an individual answered correctly.
8. Answers will be submitted online by selecting the answer corresponding to the question number. Only submissions properly filled out on the answer form will be graded.
9. Solve for x, if $2017 x+2018=2018^{2}$.
(A) 2016
(B) 2017
(C) 2018
(D) 2019
(E) NOTA
10. Find the remainder when the number $2,018,000$ is divided by 37 .
(A) 20
(B) 21
(C) 22
(D) 23
(E) NOTA
11. The value resulted when a number is multiplied by 5 and then increased by 2018 is the same as the value resulted when the same number is multiplied by 8 and then decreased by 7 . What is the number?
(A) 45
(B) 225
(C) 675
(D) 1005
(E) NOTA
12. Evaluate: $\frac{2018 \cdot 2017-2016 \cdot 2015}{2}$
(A) 4029
(B) 4033
(C) 4037
(D) 4041
(E) NOTA
13. If $x \otimes y=x^{4}-20 x^{3}+y^{2}+150 x^{2}-12 y-500 x+655$, then what is $11 \otimes 33$?
(A) 2016
(B) 2017
(C) 2018
(D) 2019
(E) NOTA
14. Ana rolls a fair six-sided die twice, and takes the sum of both outcomes. What is the probability she gets a sum between 6 and 8 , inclusive?
(A) $\frac{5}{12}$
(B) $\frac{4}{9}$
(C) $\frac{17}{36}$
(D) $\frac{1}{2}$
(E) NOTA
15. What is the greatest prime divisor of the number $2^{16}-1$?
(A) 17
(B) 37
(C) 257
(D) 13107
(E) NOTA
16. 20189 is equal to n in binary form (base 2). What is the sum of the digits of n ?
(A) 6
(B) 7
(C) 8
(D) 9
(E) NOTA
17. How many positive integer factors does $127 \cdot 128^{144}$ have?
(A) 144
(B) 145
(C) 288
(D) 290
(E) NOTA
18. Layla, who is in a rush, drives 400 miles from a point A to a point B. Then, she drives 270 miles from point B to a point C. Finally, she drives 160 miles from point C back to point A. Layla drives 2 times as fast in her first trip than her third trip and she drives 1.5 times as fast in her second trip than her first trip. Given that the amount of time it takes Layla to take her first trip was 5 hours, what is Layla's average speed (in miles per hour) out of all three trips? Express your answer as a decimal to the nearest tenth.
(A) 65.5
(B) 72.7
(C) 73.8
(D) 80.0
(E) NOTA
19. Daniel rows upstream at an average speed of $2 \mathrm{~km} / \mathrm{h}$, and he rows downstream at an average speed of $18 \mathrm{~km} / \mathrm{h}$. What is the speed of the current, in kilometers per hour?
(A) 6
(B) 8
(C) 10
(D) 12
(E) NOTA
20. What is n, if $n=\sqrt[4]{1^{3}+2^{3}+3^{3}+\ldots+8^{3}}$?
(A) 6
(B) $2 \sqrt{14}$
(C) 9
(D) $3 \sqrt{5}$
(E) NOTA
21. Benny lives at a point on the coordinate plane that is parallel to the y-axis and passes through the point $(4,7)$. What is the equation and slope of this line?
(A) $y=7$; slope is undefined
(B) $x=7$; slope is undefined
(C) $x=7$; slope is 0
(D) $y=\frac{7}{4} x$; slope is $\frac{7}{4}$
(E) NOTA

Use the information below to answer questions 14 through 16.

LiAngelo Ball, a basketball player, throws a ball up into the air. The graph of his throw can be expressed with the equation $y=-x^{2}+6 x+5$, where x and y are non-negative integers, and x represents time (in seconds), and y represents the height (in feet) from the floor.
14. From what height does he throw the ball from, in inches?
(A) 60
(B) 30
(C) 15
(D) 5
(E) NOTA
15. What is the maximum possible height, in feet, that is attained by his throw?
(A) 3
(B) 5
(C) 14
(D) 26
(E) NOTA
16. How many seconds does it take for the ball to touch the floor for the first time?
(A) $3-\sqrt{14}$
(B) $3+\sqrt{14}$
(C) 5
(D) 6
(E) NOTA
17. Rectangle $A B C D$, as shown below, is drawn such that $A B$ has a length of 8 inches, while $B C$ has a length of 5 inches. A segment drawn from point A intersects $B C$ at a point E, while another segment drawn from the same point intersects $C D$ at point F. Segments $A F$ and $A E$ intersect diagonal $B D$ at G and H, respectively. Given $B E: E C=1: 3$ and $C F: F D=1: 1$, the ratio $D G: G H: H B$ is equivalent to the ratio $x: y: z$, where x, y, and z are relatively prime positive integers. What is the value of $x \cdot y \cdot z$?

(A) 42
(B) 60
(C) 72
(D) 120
(E) NOTA
18. A regular undecagon has side length 6 units. What is the area of this polygon, in square units?
(A) $\frac{33 \cot \left(\frac{360}{11}\right)}{2}$
(B) $99 \cot \left(\frac{360}{11}\right)$
(C) $\frac{33 \cot \left(\frac{2 \pi}{11}\right)}{2}$
(D) $99 \cot \left(\frac{2 \pi}{11}\right)$
(E) NOTA
19. Three real numbers are selected at random between -2 and 2 , inclusive. What is the probability that the sum of these real numbers is less than or equal to 4 ?
(A) $\frac{7}{8}$
(B) $\frac{11}{12}$
(C) $\frac{23}{24}$
(D) $\frac{47}{48}$
(E) NOTA
20. The shortest distance between the point $(6,-7)$ and the line defined by the equation $11 x+21 y=113$ can expressed in the form $\frac{a \sqrt{b}}{c}$, where a and c are relatively prime, and b has no perfect square factors greater than 1. What is the value of $a+b+c$?
(A) 756
(B) 940
(C) 1216
(D) 2768
(E) NOTA
21. Evaluate $\sum_{n=1}^{m}\left(\frac{1}{2}\right)^{n}$ as m approaches infinity.
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) 1
(D) ∞
(E) NOTA
22. Evaluate $\ln \sqrt[2]{e^{4040}}+\ln e^{2}-2$.
(A) 2014
(B) 2016
(C) 2018
(D) 2020
(E) NOTA
23. Evaluate $2 \log 20+\log 2.5-\log 2-\log 5$.
(A) 2
(B) 3
(C) 10
(D) 100
(E) NOTA
24. What is the magnitude of the complex number $15 i-8$?
(A) 7
(B) 17
(C) 23
(D) $2 \sqrt{30}$
(E) NOTA
25. What is the product of the complex roots to the equation $x^{3}=1$?
(A) 1
(B) -1
(C) i
(D) 0
(E) NOTA
26. What is the eccentricity of any parabola?
(A) 0
(B) $\frac{\sqrt{3}}{2}$
(C) 1
(D) $\frac{4}{3}$
(E) NOTA
27. Let θ be an obtuse angle such that $\sin \theta=\frac{15}{113}$. Evaluate $\sec \theta$.
(A) $\frac{112}{113}$
(B) $-\frac{112}{113}$
(C) $\frac{113}{112}$
(D) $-\frac{113}{112}$
(E) NOTA
28. Let an angle $\theta=\frac{\pi}{12}$. Evaluate $2 \sin \theta \cos \theta$.
(A) $\frac{\sqrt{6}-\sqrt{2}}{2}$
(B) $\frac{\sqrt{6}+\sqrt{2}}{2}$
(C) $\frac{1}{2}$
(D) $\frac{\sqrt{3}}{2}$
(E) NOTA
29. A particular triangle $\triangle A B C$ has $A B=7$ units and $B C=8$ units. Given that $\angle A B C=\arcsin (0.75)$, what is the area of triangle $\triangle A B C$, in square units?
(A) $\frac{7 \sqrt{7}}{2}$
(B) 21
(C) 28
(D) $\frac{112}{3}$
(E) NOTA
30. Evaluate $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$.
(A) -1
(B) $-\frac{1}{6}$
(C) 1
(D) ∞
(E) NOTA

